Sitagliptin prevents the development of metabolic and hormonal disturbances, increased β-cell apoptosis and liver steatosis induced by a fructose-rich diet in normal rats.

نویسندگان

  • Bárbara Maiztegui
  • María I Borelli
  • Viviana G Madrid
  • Héctor Del Zotto
  • María A Raschia
  • Flavio Francini
  • María L Massa
  • Luis E Flores
  • Oscar R Rebolledo
  • Juan J Gagliardino
چکیده

The aim of the present study was to test the effect of sitagliptin and exendin-4 upon metabolic alterations, β-cell mass decrease and hepatic steatosis induced by F (fructose) in rats. Normal adult male Wistar rats received a standard commercial diet without (C) or with 10% (w/v) F in the drinking water (F) for 3 weeks; animals from each group were randomly divided into three subgroups: untreated (C and F) and simultaneously receiving either sitagliptin (CS and FS; 115.2 mg/day per rat) or exendin-4 (CE and FE; 0.35 nmol/kg of body weight, intraperitoneally). Water and food intake, oral glucose tolerance, plasma glucose, triacylglycerol (triglyceride), insulin and fructosamine concentration, HOMA-IR [HOMA (homoeostasis model assessment) for insulin resistance], HOMA-β (HOMA for β-cell function) and liver triacylglycerol content were measured. Pancreas immunomorphometric analyses were also performed. IGT (impaired glucose tolerance), plasma triacylglycerol, fructosamine and insulin levels, HOMA-IR and HOMA-β indexes, and liver triacylglycerol content were significantly higher in F rats. Islet β-cell mass was significantly lower in these rats, due to an increase in the percentage of apoptosis. The administration of exendin-4 and sitagliptin to F animals prevented the development of all the metabolic disturbances and the changes in β-cell mass and fatty liver. Thus these compounds, useful in treating Type 2 diabetes, would also prevent/delay the progression of early metabolic and tissue markers of this disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Vanadyl Sulfate on Fructose-Induced Insulin Resistance Rat

Insulin resistance syndrome, also referred to as the metabolic syndrome or syndrome X, refers to a constellation of common metabolic and cardiovascular disorders (e.g. obesity, type 2 diabetes mellitus, hypertension, and dyslipidemia), which are all cardiovascular risk factors. Insulin resistance can be induced by fructose-rich diet in rats. We investigated the effect of vanadyl sulfate (0.2 mg...

متن کامل

Protective effect of curcumin in fructose-induced metabolic syndrome and in streptozotocin-induced diabetes in rats

Objective: The aim of this study was to investigate the effect of pre-treatment with curcumin on metabolic changes induced by two different pathophysiological mechanisms in rats (fructose diet and streptozotocin (STZ)-induced diabetes mellitus). Materials and Methods: Five groups with 10 rats per group were investigated: control group (healthy rats), fructose diet groups without any pre-treatme...

متن کامل

مکانیسم مولکولی دیس‌لیپیدمی متابولیک در وضعیتهای مقاومت به انسولین

Insulin resistant states are emerging rapidly and lots of efforts have gone into understanding their pathogenesis and major metabolic consequences. Hypertriglyceridemia, a major complication of this metabolic syndrome, seems to be caused by overproduction of lipoproteins (LPs) containing apo B that are rich in triglycerides. Some in vitro and in vivo models have been introduced so as to under...

متن کامل

New Perspectives on the Role of Hyperglycemia, Free Fatty Acid and Oxidative Stress in B-Cell Apoptosis

Apoptosis is a complex network of biochemical and molecular pathway with fine regulatory mechanisms that control the death event during several pathological situations in multi cellular organisms. It is the part of normal development that occurs in a variety of diseases and is known as aberrant apoptosis. Pancreatic β cell apoptosis is also a pathological feature which is common in both type 1 ...

متن کامل

Succinic Acid Monoethyl Ester and Metformin Regulates Carbohydrate Metabolic Enzymes and Improves Glycemic Control in Streptozotocin-Nicotinamide Induced Type2 Diabetic Rats

Objective. Succnic acid mono ethyl ester (EMS) was recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. In the present study the effect of EMS and Metformin on the activities of carbohydrate metabolic enzymes in streptozotocinnicotinamide induced type 2 diabeteic model was investigated. Methods. EMS were injected intraperitonially at doses 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical science

دوره 120 2  شماره 

صفحات  -

تاریخ انتشار 2011